
NASA-TIq-111477 7_V, _. . .i I

Compiling Redesign Plans
and Diagnosis Rules from a

Structure/Behavior Device Model

Richard M. Keller Catherine Baudin
Yumi Iwasaki Pandurang Nayak Kazuo Tanaka

Technical Report FIA-90-11-07-01
November 1990

n g/ Ames Research Center

Artificial Intelligence Research Branch

Mail Stop 244-17
Moffett Field, CA 94035-1000

Compiling Redesign Plans and Diagnosis Rules Keller et al.

Compiling Redesign Plans and Diagnosis Rules
from a Structure/Behavior Device Model

by

Richard M. Keller"

Catherine Baudin °"
NASA Ames Research Center

Knowledge

Yumi Iwasaki

Pandurang Nayak
Systems Laboratory, Stanford University

Kazuo Tanaka
NTT Human Interface Laboratories

[To appear as a chapter in the forthcoming book "Knowledge Aided Design",

edited by Marc Green, to be published by Academic Press (London), 1991.]

Employed under contract NAS2-13210 to Sterling Federal Systems.
""Employed under contract NAS2-12952 toRecom Software, Inc.

Compiling Redesign Plans and Diagnosis Rules Keller et al.

ABSTRACT

The current generation of expert systems is fueled by special-purpose, task-specific associational rules
developed with the aid of domain experts. In many cases, the expert has distilled or compiled these so-
called "shallow" rules from "deeper" models of the application domain in order to optimize task
performance. With the traditional knowledge engineering approach, only the shallow, special-purpose
rules are elicited from the expert -- not the underlying domain models upon which they are based. This
results in two significant problems. First, expert systems cannot share knowledge bases because they contain
only special-purpose rules and lack the underlying general domain knowledge that applies across tasks.
Second, because the underlying models are missing, shallow rules are unsupported and brittle.

This chapter describes a proposed second generation expert system architecture that addresses these
problems by linking special-purpose rules to underlying domain models using a process called rule
compilation. Rule compilation starts with a detailed domain model, and gradually incorporates various
simplifying assumptions and approximations into the model, thereby producing a series of successively less
general - but more task-efficient - models of the domain. The end product of the rule compilation process is
an associational rule model specialized for the task at hand. The process of rule compilation is illustrated
with two simple implemented examples. In the first, a structure/behavior model of a simple engineered
device is compiled into a set of plans for redesign. In the second, the same underlying device model is
compiled into a set of fault localization rules for troubleshooting.

Compiling Redesign Plans and Diagnosis Rules Keller et al.

Table of Contents

Section Page

1. INTRODUCTION AND MOTIVATION ... 1
2. MODELING THE REACTION WHEEL ASSEMBLY .. 3

2.1. Description of RWA ... 3
2.2. Device Model for RWA .. 6

22..1. Structural representation ... 6
2.2.1.1.Devicecomponents .. 6

2.2.1.2.Spatial representation..7

2.2.1.3.PhysicalConnectivity..7

2.2.1.4.Component materials..8

2.2.1_.Example ..8

2.9..2.Behavioralrepresentation..10
2.2.2.1.Quantities...10

2.2.2.2.Quantitative Equations...11
2-2-2.3.QualitativeEquations..12

3. COMPILING ABSTRACT REDESIGN PLANS ...13

3.1.Equation set assembly...14
3.2.Causaldependency analysis...15

3.3.Redesigngoaltreegeneration...16

3.4.Goal pruning and ordering...17

3.4.1.Pruningheuristics..18

3.4.2.Ordering heuristic...19
3.5.Redesignplansynthesis...19

3.6.Summary: Compilingredesignplans...19
4. COMPILING DIAGNOSTIC RULES ..20

4.1.Compiling Fault LocalizationRules..21

4.2.CompilingtheThermal InfluenceModel ...24

4.3.Compiling the Thermal ResistanceModel ...24

4.4.Summary: DiagnosticRule Compilation...27
5. DISCUSSION ..28

ACKNOW LEDGMENTS ..30

APPENDIX A ..31
REFERENCES ..32

ii

Compiling Redesign Plans and Diagnosis Rules Keller et al.

1. INTRODUCTION AND MOTIVATION

The current generation of expert systems is fueled by special-purpose, task-specific associational rules that
have been developed with the aid of domain experts. In many cases, the expert has distilled or "compiled"
these so-called "shallow" rules from general domain principles in order to optimize problem solving
performance for a specific task context [Anderson 86, Laird et al. 871. The rules incorporate assumptions that
are appropriate to the context, and thereby simplify the necessary reasoning. In other words, compiled
expert rules trade generality for efficiency in problem solving.

The task-specificnatureofexpertrulescan be viewed as eithera strengthora weakness ofcurrentsystems,

depending on one'sperspective.Becausetherulesareelicitedinthecontextofa specifictask(e.g.,design,

diagnosis),they can be custom-crafted,or optimized, to work efficientlytoward the solutionof that
particulartask. The taskalsoservesto circumscribeand focus the knowledge acquisitionprocess. A

knowledge engineerneed onlyrepresenttherulesorheuristicsnecessarytosolveone specifictaskorclassof
tasks.

Unfortunately, the use of task-specific rules also limits the capabilities of today's expert systems. Despite
the intensive effort required to construct rule bases, virtually none of the rules acquired are transferrable to
different task situations. A task-specific rule base does not constitute a reusable resource - diagnostic rules,
for instance, cannot be used to solve a design problem. Furthermore, the scope of a system's problem solving
expertise is severely narrowed by the use of task-specific rules. If a problem situation exhibits
characteristics not anticipated by the knowledge engineer, the custom-crafted rules exhibit a type of
"brittleness" - they may apply incorrectly, or fail to apply when appropriate. In contrast, a human expert
understands the general domain principles upon which the task-specific rules are based, and can delimit
their scope of applicability. The expert can reason from more basic knowledge when simple associational
rules are insufficient, bypassing problems of brittleness.

Despite their limitations, we do not advocate the elimination of task-specific associational rules from
knowledge-based systems. The efficiency benefits associated with "shallow" rules are too great to ignore.
Instead, this paper investigates the advantages of a next generation architecture that incorporates both
general-purpose models of the domain and efficient, task-specific rules - as well as structures that

explicitly bridge the gap between the two forms of knowledge.

For example, consider the knowledge-based systems architecture illustrated in Figure 1. This architecture
was designed as a next-generation knowledge-based system for reasoning about engineered devices. At the

core of the system is a detailed device model, incorporating knowledge of device structure, function, and the
physical principles underlying device operation. Associated with the model is a "first principles"

reasoning engine that is capable of reasoning about and simulating the behavior of the device under a
variety of conditions. In theory, the reasoning engine has the ability to perform diagnosis or redesign from
first principles (in the manner of [de Kleer & Brown 84, Davis 84, Genesereth 841). However, relying solely
on first principles reasoning may be infeasible due to problems of computational intractability. To bypass
some of the complexity associated with first principles reasoning, the system uses task knowledge in
conjunction with a so-called "knowledge compilation" techniques {Dietterich 86} to produce a set of
customized, task-specific inference rules. The rules constitute a specialized representation of the general-
purpose knowledge found in the device model. The rule representation can be interpreted by a special-
purpose inference engine that is optimized for solving a particular type of task (e.g., diagnosis). During the
process of rule compilation, the compiler produces bridging structures called justifications. Justifications
record the relationship between the compiled rules and the underlying first principles knowledge used in
rule compilation.

CompilingRedesign Plans and Dhignos/s Rules Keller et al.

ecial-purpose
Diagnosis

Engine

Speclal-purpose

Redesign

Engtne

Figure 1: An Architecture for Next.Generation Systems

CompilingRedesign Plans and Diagnosis Rules Keller et al.

This architectureaddresses both the brittlenessand non-reusabilityproblems describedabove. By

constructinga general-purpose device model, ratherthan a special-purposerule base, the domain

knowiedge isavailableto support inferencingacrossa wider varietyof tasks.And through knowledge

compilation,the system can transformthedevicemodel intoan efficient,taskspecificrulerepresentation

inordertoavoidtheintractabilityproblems associatedwith firstprinciplesinferencing.But incontrastto

currentsystems,when the shallow rulesfail,the system can resortto a firstprinciplesanalysisby

examining the justificationknowledge recorded with the rules.This architecturesynthesizesvarious

approaches,includingwork on rulejustification[Smith et al.85],"shallow"knowledge compilation

[Chandrasekaran& Mittal83,Sembugamoorthy & Chandrasekaran 86,Araya & Mittal87,Brown & Sloan

87],explanation[Swartout831,and operationalization[Mostow 81,Keller87].

The purpose of this paper is to explore the plausibility of this next generation architecture by presenting
the results of a one-year feasibility study that was proposed in [Keller et al. 87] and conducted at the
Knowledge Systems Laboratory with the support of NASA's Ames Research Center and Marshall Space
Flight Center. The study involved the construction of simple knowledge compilers capable of producing
selected task-specific rules (for both a diagnostic and a redesign task) from a general-purpose model of a
simple, engineered device - the Reaction Wheel Assembly of NASA's Hubble Space Telescope. This
chapter describes the device representation and the rule compilation mechanism in detail. The rest of the
chapter is organized as follows: In the next section, we describe the Reaction Wheel Assembly, and present
our general-purpose model of the device. Then, we describe the functioning of two implemented knowledge

compilers, one that compiles redesign plans and the other that compiles diagnostic rules. Finally, we
analyze the results of the study and discuss its limitations.

2. MODELING THE REACTION WHEEL ASSEMBLY

The ReactionWheel Assembly (RWA) ispartofthepointingand controlsubsystemaboardNASA's Hubble
Space Telescope(HST). This electromechanicaldevicewas a reasonablecandidateto model because it

consists of a small number of components, and functions according to relatively simple physical principles.
The RWA served as a useful testbed for our research, but any number of simple engineered devices would
have sufficed to investigate research issues described above. This section describes the RWA and presents a
simple model of its structure and behavior.

2.1. Description of RWA

The function of the Reaction Wheel Assembly device (RWA) is to point the Space Telescope at the proper
area of the sky, and keep the telescope locked onto its target. The RWA does not make use of thruster jets to

control HSTs position - exhaust vapors would damage the telescope's sensitive optical instruments.
Instead, the RWA functions according to a very simple physical principle - conservation of angular

momentum. The reaction wheel acts like a spinning top within the telescope (Figure 2). When the reaction
wheel is at rest, the telescope is stationary, floating in orbit around the earth. When NASA scientists
wish to move the barrel of the telescope, they start the reaction wheel spinning. Due to conservation of
angular momentum, the telescope starts spinning in the opposite direction from the wheel. When the

telescope nears its proper orientation, the spin is reversed and the telescope slows down. I There are four
reaction wheels aboard HST, and the sum of the torque forces generated by these wheels enables the

telescope to rotate about an arbitrary axis.

1Actually, this explanation is somewhat oversimplified. The reaction wheel must be moving at all times to counteract
the effects of the earth's gravitational field, which cause a small torque even when HST is "stationary".

Coml_ling Redaign Plans and Diagnosis Rula Keller et al.

• °

Figuze 2: How the RWA functions

RAY S - COMMUNICATIONS

BAY I - POINTING CONTROL AND INSTR

9
BAY t) - REACTION WHEEL

(RWA| (21

NO.] FWO

NO. I AFT

SAY 10 - SI CONTROt
AND DATA

HANDLING

• V2 -V2

BAY 1 - DATA MANAGEMENT

BAY I - POWER

4 1
BAY 3 - POWER BAY 2 - POWER

3

LOOK'NG _ORWARO

Figure 3: HST transport bays ((Tom [LMSC 84, Figu:e 1-2], used with permission)

Coml_ling Redesign Plans and Diagnosis Rules Keller et al.

d • _II_'_"L- Exterior-SensorExterior.door/"

sens°r

m

| i

" " " __ RCE-Sensor

l---Lelt-Bay-Wall LRCE IB '4] Right-Bay-WaU--_

Tunnel-door, ,& • ,,.TunneI-Sensor

Figure 4: RWA cross-sectional view (adapted from [Perkins & Austin 87], used with
permission). The outside shell of the RWA consists of a metal casing, which mounts directly to

the telescope bay walls. Inside the casing is a hollow alurmnum wheel with a steel rim,
mounted on a rotating shaft. The shaft is connected to a motor at the top of the assembly. The
Rotor Control Electronics (RCE) and the Power Control Electronics (ICE) supply power and
control signals to the motor. Each end of the wheel shaft is supported by a bearing. The top

bearing is called the Motor-Bearing, and the bottom bearing is called the RCE-Bearing (due to
their proximity to the motor and the RCE, respectively). Near each of the heat-generating

components within the RWA (e.g., the bearings) there is a small temperature sensor used to
monitor the device's functioning.

The reaction wheels are mounted within the transport bays which ring the barrel of the telescope (Figure
3). One end of the RWA points out toward the bay door (and deep space) while the other end points in
toward the telescope tunnel. A cross-sectional view of the RWA is presented in Figure 4.

Compiling Redesign Plans and Diagnosis Rules Keller et al.

2.2. Device Model for RWA

This section reviews the device model constructed for the RWA. The model was constructed using a frame-

based, object-oriented knowledge representation tool called HyperClass 2. The model consists of two basic
parts: a structural representation, and a behavioral representation. These are discussed in the following
two subsections.

2.2.1. Structural representation

The structural part of the device representation consists of information about the component/subcomponent
structure of the device, including the physical connectivity of the components and the spatial relationships
among the co__.

2.2.1.1. Device components

Each device component is represented by a different object (frame) in a HyperClass knowledge base.
Components come in two different varieties: either complex or primitive. Complex objects are those whose
internal substructures are represented explicitly by a set of more detailed, lower-level subcomponents,

whereas primitive components are those represented as black boxes. The component/subcomponent
hierarchy for the RWA is presented in Figure 5. The breakdown of complex RWA components into lower-
level subcomponents corresponds roughly to the structural units referenced in the RWA specifications {LMSC
841.

Bay

wer-ControI-Ele_ronics _ PCE-Body

PCE-Temp-Senllor
mini

/,Ro¢or ,-m:___ 8oflom-SheH

// _ Too-Shell

Rolor-ComroI-Electmnics _ RCE-Teml>Sensor

P,CE-Bnnng-eoc_
,,.,_ _ .RCE-Beld_ng. Tamlg-Se nlo r

Fle41Clion-Wheel-Alaem bly / r_._..uwwmv_ Luoricint-H

/ _ BalI-R

_, jf _4olor-Bearing-Body

/+.p Motor-Bearing _,'Motor-Bearmg-Temp-Sensor

-,+,o,o.

\ +::',o,--+,.,o,.+0+,
. Right-RWA-Caaing-Wall

Molar-Tamp-Sensor

Calling _-.-, LelI-RWA-Castng-Wall

"_,Bo,om-RWA-Ciming-Wall
"_Top-RWA-CIlino-W III_Exlerior-Door

...... .,_ Exlerior-Ooor-GodyHight Bay Wall_" " " Exlerior-Ooor-Tamp-Senso¢

_'tLeIt'Bay'WaII_T unnel-Door-Body
/unnel-Ooor

_ _Tunnal-Ooor- TI rap-Sensor

Rtghl-RWA-Brackel
tLelI-RWA-Bracket

Figu_ 5: Component/subcomponent hierarchy for RWA

2HyperClass is a trademark of Schlumberger Technologies, Inc. HyperClass is a successor of the Strobe knowledge
representation tool ISmith 831.

Compiling Redesign Plans and Diagnosis Rules Keller et al.

2.2.1.2. Spatial representation

For the purposes of our initial study, we utilized a simple two-dimensional, bounding box spatial

representation. Each device component is circumscribed with a rectangle, and the coordinates of the lower

left comer of the device are recorded with respect to the reference axis for the device's supercomponent.

The bounding box representation for RWA is presented in Figure 6. Components listed in boldface are
complex componems.

Exterior- Door-Body'r-Tody-']3_ Exterior.Door.Te mp.Se nsor

Motor- Te mp-Sensor

Motor-S

PCE-Temp-Sensor

ToD-RWA-Casing-Wall

Motor-Bearl

Motor-Beari

RCE-Beadng-

RCE-Bear

Tamp-Sensor

Top-Shell

Ring

RCE-Baaring-
Tamp-Sensor

ibricant-S

Bottom-RWA-Casing-Wall

Tamp-Sensor

Tunnel- TunneI-Door-Temp-Sensor

Figure 6: Bounding box representation for RWA

2.2.1.3. Physical Connectivity

Physical connections between components are modeled as connection objects, with each high-level

connection being elaborated in terms of lower-level connections. Figure 7 illustrates the connection structure

of the subcomponents within the Reaction-Wheel-Assembly component. The children of Reaction-Wheel-

Assembly in Figure 7 represent all physical connections among its constituent subcomponents. These

connections are elaborated at a greater level of detail as connections between lower-level subcomponents.

Compiling Redesign Plans and Diagnosis Rules Keller et al.

For example, the connection between the PCE and the Casing is elaborated as a connection between the body

of the _ and the top casing wall (PCE-Body+T-RWA-C-WalI). In general, the physical connection obg, ct
provides a place to record information about the nature of the connection between two components (e.g.,
whether it is a hinge, a weld, a bolt, etc.).

Reaction.Wheel.Assembly

R Buring+B RWA C Wall '_ Lubricant.R+B-RWA-C-Wall

.... _ R-Bearing.Body ÷8-RWA-C-Wall

[/$haR+B-RWA-C-Wall

I M-S-Aslambly+Caaing (_

f \'_ $halt+T-RWA-C-Wall
, _ j Lubricant- M+T-RWA-C-Wall

tM.Bearing+T-RWA-C-Wall _,_
" M-Bearing-Body+T-RWA-C-Wall

Rotor+M.S.Assembly_ B'Shell+Shafl

i T.Shell+ShaR
. RCE+C._ RCE-Body+B-RWA-C-Wall

PCE+Cadng . PCE-Body+T-RWA-C-WaI!

Examnle of abbreviations used:

hal-connections:

RCE-Body+B-RWA-C-Wali = Connec_on between RCE.Body and
Bottom-RWA-Casing -Wall

,, , elaborated-by:

Figure 7: Physical connectivity of RWA components

2.2.1.4. Component materials

Each primitive component is modeled as being composed of a single material Materials are represented as
objects in the knowledge base. Various in_nsic propert/es associated with a material - such as coefficient
of reflectivity and density - are stored in the material object.

2.2.1.5. Example

To clarify the representation of device structure, following is an instance of the HyperClass object that

represents the RWA component. Object names are printed in uppercase.

Object: REACTION-WHEEL-ASSEMBLY-1 {RWA-1}
Type" individual

Generalizations: ACTUATOR ; a type of COMPONENT
Specializations: nil
Coml_onent*Inv: BAY-6
Width: 24.0

Height: 22.0
Subcomponents: (PCE*s RCE*s Rotor*s Casing*s Motor-shaft-assembly*s)

Connections: (M-s-assembly+casing*s PCE+casing*s Rotor +m-s-ass_nbly*s RCE+casing*s)

Compiling Redesign Plans and Diagnosis Rules Keller et al.

PCE*s: PCE-22

X-position: 18.0
Y-position: 16.0

RCE*s: RCE-17

X-position: 7.0
Y-position: 0.0

Rotor*s: ROTOR-8

X-position: 2.0
Y-position: 8.0

Casing*s: CASING-66

X-position: 0.0
Y-position: 3.0

Motor-shaft-assembly*s: MOTOR-SHAFT-ASSEMBLY-2
X-position: 6.0
Y-position: 4.0

M-s-assembly+casing*s: MOTOR.SHAFT-ASSEMBLY+CASING-36
PCE +casing*$: PCE +CAS ING-12

Rotor+m-s-assembly*s: ROTOR+M-S-ASSEMBLY-16
RCE +casing*s: RCE+CASING-32

The RWA is a kind of ACTUATOR component, and inherits slots from this class of objects. The
suporcomponent of RWA-1 is BAY-6, listed in the Component*lnv (component-inverse) slot. Conceptually,
therefore, the RWA is considered a subcomponent of the Space Telescope bay in which it is physically
located. The Width and Height slots give the dimensions of the bounding box for RWA-I. (Measurement
units are unspecified.) The lower left comer coordinates of the RWA-1 bounding box are recorded in its

supercomponent, BAY-& The Subcomponents slot of RWA-1 contains a list of slots that point to each of its

subcomponents. 3 These slots (e.g., PCE*s) establish the lower left comer coordinates of each subcomponent's
bounding box relative to RWA-I's lower left comer. The Connections slot contains a list of slots that

describe the physical connections between the RWA-I's components. For example, the connection between
the Casing and the RCE is represented by the contents of the slot PCE+casing*s, which consists of a
PHYSICAL-CONNECTION object: PCE+CASING-12.

Object: PCE+CASING-12

Type: individual
Generalizations: PHYSICAL-CONNECTION

Specializations: nil
Compl: PCE-22

Object:RWA
Slot: PCE*s

Comp2: CASING-66
Object: R WA
Slot: Casing*s

Elaborations: (PCE-body+t-RWA-c-wall's)
PCE-body+t-RWA-c-wall*s: PCE-BODY+T-RWA-C-WALL-12

PCE+CASING-12 is a binary connection between the components pointed to by the Compl and Comp2 slots.
These slots also record backpointers to the component's supercomponent and the slot name in which the
component appears. The Elaborations slot contains a list of slots which point to a more detailed description

3A representationalalternativewouldbe toavoidtheindirectreferencethroughslotsby recordingthesubcomponent

objectsdirectlyin the Subcomponentsslot.However, the indirectreferencingscheme permitsus to associate
additionalmeta-levelinformationwith the component descriptions(e.g.,bounding box coordinates).This
representationalsohelpsustodeclarativelyencodethestructureofgenericcomponents,irrespectiveofhow theyare
instantiated.

Compiling Redesign Plans and Diagnosis Rules Keller et al.

of the physical connection. More specifically, PCE-22 and CASING-66 are actually connected because PCE-
BODY-22 touches TOP-RWA-CASING-WALL-3. This fact is reflected in the following object:

Object: PCE-BODY+ T-R WA-C-WALL-12
Type.: individual
Generalizations: PHYSICAL-CONNECTION
Elaboration*inv: PCE +CASING-12
Elaboratwns: nil

Compl: PCE-BODY-22

Object: PCE
Slot: PCE-body*s

Camp2: TOP-RWA-CASING-WALL-3

Object: CASING
Slot: Top-R WA-casing-wail*s

Notice that this representation permits connections between components that are not immediate
subcxm_ponents of the same supercomponent.

2,2,2, Behavioral representation

Device behavior is represented by a set of behavioral equations. These equations specify constraints among
numeric quantities associated with device components. The behavioral equations are represented as
ordinary quantitative equations as well as qualitative differential equations to facilitate different types
of reasoning. Quantitative equations can be used to compute exact values for quantities, whereas
qualitative differential equations can be used to determine how changes in quantities propagate through a
device. Quantitative equations represent precise numerical relationships between quantities (e.g., F=maL
Qualitative d/fferential equations, on the other hand, represent much weaker relationships between
changes in quantities (e.g., the qualitative differential equation corresponding to F=ma says, among other
things, that if m or a decrease, F must also decrease).

2.2,2.1. Quantities

Each numeric quantity or parameter associated with a component (e.g., Mass, Velocity) is represented by a
separate slot in that componenfs description. The quantity slot points to an instance of a QUANTITY object
in the knowledge base. The QUAN'ITrY object bundles together all information pertaining to the quantity,
including its value, procedures for computing the value, simple constraints on the value, and any working

assumptions about the sign and/or magnitude of the quantity. The QUANTITY object also contains a slot
called "possible-equations", which provides a pointer to all quantitative equations in which that quantity
appears. An example will clarify the relationships among these different types of objects.

Here is a description of the rolling ball component of a ball-bearing in the RWA:

Object: 8AtJ.-I51
Type: individual
Generalizations: BALL

Specializations: nil
Component'inv: RCE-BEARING-221
W'ulth: 1

Height: 1
Subcomponents: nil
Radius: BALL-RADIU$-102

; A type of COMPONENT

10

Compiling Redesign Plans and Diagnosis Rules Keller et al.

The Radius slot contains BALL-RADIUS-102, which represents a quantity corresponding to the radius of
the rolling ball. BALL-RADIUS-102 is described below:

Object: BALL-RADIUS-102
Type individual
Generalizations: BALL-RADIUS ; A specialization of QUANTITY

Specializations: nil
Constraints: constant

Possible-equations: (BaU-radius-eqn*s Bearing-friction-eqn*s)
BaU-radius-eqn*s: BALL-RADIUS-EQUATION-32
Bearing-friction-eqn*s: BEARING-FRICTION-EQUATION-103

One can see from the above description that BALL-RADIUS-102 appears in two equations--BALL-
RADIUS-EQUATION-32 and BEARING-FRICTION-EQUATION-103. The "constraints" slot is valid for

numeric quantities, and contains information about constraints imposed on the quantity. Currently, the

system can represent three simple types of unary constraints on quantities: keep quantity constant, maximize
quantity, and minimize quantity. Such constraints may originate with the design specification documents.

2.2.2.2. Quantitative Equations

Quantitative equations are represented by QUANTITATIVE-EQUATION objects. Each such object
specifies an equation in terms of local variables, and provides a mechanism to bind these local variables to
actual quantities. QUANTITATIVE-EQUATION objects also have a precondition slot, representing an
expression that must be true for the equation to hold. Each QUANTITATIVE-EQUATION object may also
be linked to 0 or more qualitative differential equations (represented by QUALITATIVE-EQUATION
objects). These qualitative equations represent different versions of the quantitative equation
corresponding to different assumptions about the signsof the quantities.

Consider, for example, the following quantitative equation, representing a constraint between the hall's
radius and the width of the bearing:

Object: BALL-RADIUS-EQUATION-32
Type: individual
Generalizations: BALL-RADIUS-EQUATION

Specializations: nil
Precondition: T

Equation: (Equal Radius*s (Multiply 0.5 Width*s))
Locals: (Radius*s Width*s)

Radius*s: (Radius Ball*s)

Width*s: (Bearing-width RCE-bearing*s)
Objects: (BaU*s RCE-bearing*s)

Ball*s: BALL-151

RCE-bearing*s: RCE-BEARING-12
Qualitative-equations: (Qual-ball-radius-eqn*s)
Qual-ball-radius-eqn*s: QUAL-BALL-RADIUS-EQN-73

; A type of QUANTITATIVE-
; EQUATION

; This equation always holds

; List of local variables

; A path specification to compute
; bindings

; Objects with participating

; parameters

; List of qualitative equations

The bindings for the local variables found in the Locals slot are specified using a path specification. Thus,
in the above example, the path specification for Radius*s is (Radius Ball*s), which expands to the Radius

11

CompilingRedesign Plans and Diagnosis Rules Keller et al.

slot of the BalPs slot of the current equation object (i.e., the Radius slot of BALL-151). From the
Qualitative-equations slot we see that BALL-RADIUSoEQUATION-32 is linked to qualitative
differential equation QUAL-BALL-RADIUSoEQN-73 (see below).

The equation language used to express quantitative constraints is limited to expressing equalities between
terms, where terms consist of numbers, local variables, and functions of other terms. Many common

arithmetic functions are predefined in the system, and it is easy to add new ones in a modular fashion.

2.2.2.3. Qualitative Equations

Equations are also represented in their qualitative differential form since the qualitative differential form
is more convenient than the quantitative form for the purpose of inferring the influence of a change in one
variable on others. An ordinary, quantitative equation is converted into a qualitative differential equation
by, first, time-differentiating both sides of the equation, and, then, converting the result into a qualitative
equation. Qualitative equations express constraints on the signs (+, O, or -) of variables. In a qualitative
equation, variables represent signs of quantities but not their magnitudes. An equation is converted into a
qualitative form by discarding constant coefficients except for their signs and replacing the variables by
their qualitative versions.

Take, for example, the following equation (1) with vanables x, y, and positive constants a and c.

x +cy=a. (I)

Equation (1) ts time-differentiated to produce

x'+cy',.0,

where the primed variables (x', y') denote the time derivatives. 'The qualitative version of this equation is

Iz'l + ly'l = 0, (2)

where [x'] and [y'] denote the signs of the time-derivatives of x and y, respectively, and the operators are

qualitative operators over signs. 4 Qualitative equation (2) expresses the constraint that the signs of x' and
y' must be different or they should both be zero. When variables in a qualitative equation are time
derivatives as in this case, qualitative equations represent constraints on how the other variable values can
change when one of them changes. Thus, according to equation (2), when x increases, y must decrease or vice
versa, and when one of them remains constant, the other must also.

A qualitative differential version of the above equation BALL-RADIUS-EQUATION-32 is represented by
the QUAL-BALL-RADIUS-EQN-73 object:

Object: QUAL-BALL-RADIUS-EQN-73
Type: individual
Generalizations: QUAL-BALL-RADIUS-EQN-73

Specializations: nil
Equation: ((4. Radius*s) (- Width'sD
Owner: BALL-RADIUS-EQUATION-32

Assumptions: nil

; Specialization of Qualitative-
; Equation

; [Radius*s'] - [Width*s'l = 0

4See any discussion of qualitative physics (such as [de Kleer & Brown 841 or {lwasaki 89]) for a more detailed
description of qual/tative arithmetic.

12

Compiling Redesign Plans and Diagnosis Rules Keller et al.

The Equation slot is filled by a list of pairs, (si qi), where the si are either + or -, and the qi are quantities,
specified by local variables. (The local variables used in the Equation slot are bound in the corresponding
quantitative equation object, which is stored in the Owner slot.) The pairs are interpreted as signed terms
in a normalized qualitative differential equation: Sl ql s2 q2 ... Sn qn = O. The qualitative differential

equation ((+ Radius*s)(- Width*s)), for example, specifies that the sign (+, -, 0) of the time derivative of
the ball bearing radius minus the sign of the time derivative of the bearing width must equal zero. From
this,we can determinethatas theballradiusincreases,thebearingwidth must decrease.The Assumptions

slotspecifiesany assumptions thatwere made in convertingthe originalquantitativeequationintoa

qualitativeform. For example, itmight be necessarytoassume thata particularquantityisnon-negative

toproduce a qualitativeform.

3. COMPILING ABSTRACT REDESIGN PLANS

This section describes how the general-purpose model of the RWA presented in Section 2.2 can be compiled
into a set of abstract plans for redesign. Here is a sample illustrating the type of abstract redesign plan
generated by the compiler:

the goal is to decrease the temperature of RCE-Bearing
consider the following actions, in the following order:

increase the bearing-width of RCE-Bearing;
increase the thickness of Bottom-RWA-Casing-Wall;
increase the thermal-constant of Bottom-RWA-Casing-WaU;
increase the body-width of RCE-body;
increase the thermal-constant of RCE-body

Notice that this plan is abstract in the sense that it does not specify exactly how to achieve the desired
decrease in temperature, but merely narrows the set of potential actions for achieving the goal down to a
small ordered set of recommended actions. Furthermore, the actions do not suggest exact quantitative values

for increasing and decreasing the specified quantities. This type of plan serves as a starting point for a
redesign system, and must be elaborated further to produce a complete redesign plan in the form of a set of
executable actions. For example, the redesign shell developed for the FRM financial planning application
[Gelman et al. 88] can accept an abstract redesign plan as input and produce a completely specified final
plan as output. The final plan specifies which of the recommended redesign actions should be executed and

exactly how much the quantities should be modified. The shell uses the input plan plus knowledge about
current values of quantities and constraints on those values to produce the final plan.

The processby which an abstractredesignplan iscompiled resemblesmacro-formation. The plan is

extractedfrom a treeof redesigngoalsgeneratedduringthe compilationprocess.The rootoftheredesign

goal treeconstitutesthe "if"partof theplan and the leavesof the goaltree,suitablyordered,form the

"then"part. The goaltreeused incompilingtheredesignplanshown above isillustratedinFigure8.

The followingsectionsdetailthe seriesofcompilationstepsused to transformthe general-purposeRWA

device model (Section2.2),firstintoa quantitativebehavior model, then intoa qualitativebehavior

model,and finallyintoa causalbehaviormodel,beforeproducingthe redesigngoaltreepicturedinFigure
8.

13

Conwiling Redesign Plans and Diagnosis Rules Keller et al,

decrease _ increase _ increase

BearingFrictmn"_"_ Balll_dius v BearinsWidth
decrease

BearingTemp _ 7 increaseCasingWallThickness

"_,-_k, decrease _ increase "
TunnelContributi_unnel-BearingResistance _ increaseCasingThermalConstant

Hgure 8: Final redesign goal tree

3.1. Equation set assembly

The first step in the process of compiling redesign heuristics is to assemble a set of qualitative differential
equations, which can be viewed as a qualitative model of the RWA's operation. The qualitative model
abstracts away precise numeric constraints and retains only imprecise knowledge of functional relationships
that describe changes in quantifies. For redesign, this model will be used to draw inferences about how to
modify the values of controllable quantities in order to ach/eve a given redesign goal.

In assembling a qualitative equation model, it is computationally advantageous to limit the scope of the
model to the particular subsystem undergoing redesign. The idea is to effectively circumscribe a focal set of

quantities (and equations) within the potentially large set of quantities/equations associated with the
entire device. So to form an equation model, the compiler uses structural subcomponent links present in the
RWA device model to assemble all components within a given, scoping supercomponent (e.g., the BAY in
which the RWA sits). Then the compiler gathers together the set of quantitative equations that
interrelate the quantities associated with those components. (As described in Section 2.2.2.1, each
QUANTITY object includes a pointer to the set of quantitative equations in which that quantity appears.)
Each of these quantitative equations can be associated in the device model with a set of corresponding

qualitative differential equations, lh general, there is no unique qualitative differential equation
corresponding to a Oven quantitative equation. To select a single qualitative form, the compiler must make
use of assumptions about the signs of the quantities involved. For example, the following quantitative
equation can be transformed into any one of three qualitative differential equations, depending on whether
the constant, c, is positive, negative, or zero:

Original quantitative equation: x + cy = z
After time differentiating: x"+ cy' = z"
Converting to qualitative format:

case 1: c =O [x'J. fz'] = O

case 2: c > 0 /x'] + ly'l - lz'! = 0
case 3: c < 0 [x'i - [y"i - lz'i = 0

Notation: [x'] stands for the sign of the time derivative of x

Given a set of sign assumptions, it is possible in principle to automate the conversion from
quantitative to qualitative differential equations. However, in the current version of the system,
qualitative differential equations are generated manually from the quantitative equations. Any

14

Compiling Redesign Plans and Diagnosis Rules Keller et al.

assumptions about the sign of quantities are recorded in the qualitative equation object (see Section
2.2.2.2). A complete listing of all qualitative equations used in the RWA redesign problem can be
found in Appendix A.

3.2. Causal dependency analysis

The next step is to infer causal relationships among the quantities represented in the qualitative equation
model. Whereas equations are inherently acausal, the redesign task requires knowledge of causal
dependenciestodeterminehow designchangesmodifyingspecificquantitiespropagatethroughthedevice

to otherquantitiesviaequations.Simon & lwasaki'scausalorderingprocedure [lwasaki& Simon 86] is

used toanalyzecausaldependenciesand produce a graph structurethatencodes thesedependencies.In

ordertoapply theprocedure,one must have thesame number ofequationsas thevariables.Furthermore,

theequationsmust be independentand each ofthem must representa conceptuallydistinctmechanism in

thesituation.Ifsome ofthequantitiesareknown tobe exogenous,orquantitiesthataredirectlycontrolled

by externalfactors,an equationof theform v = c,where v isaquantityand c issome constant,foreachsuch

quantityv, must beincludedinthesettorepresentthisfact.

Given a set of N equations which satisfy these requirements, the first step of the causal ordering procedure
is to isolate all the subsets of quantities whose values can be determined independently of the remaining
quantities. Such a subset of quantities can be found by identifying a set of n equations which contains
exactly n quantities but which itself does not include a proper subset containing the same number of
equations as quantities. Such subset is called a minimal complete subset. The quantities in any minimal
complete subset are the "uncaused causes" of the system, and they are causally independent of other
quantities. Each exogenous quantity equation consists one minimal complete subset. Next, the equations in
all rmnimal complete subsets are removed from the original set of equations and their quantities are also
removed from the remaining equations, producing a reduced set of N - m equations in N - m quantities, where
m is the total number of equations (and variables) in all the minimal complete subsets. Then, a new
independent subset of quantities is determined in the reduced set. This process repeats until the set can no
longer be reduced. For each equation in the original set, the quantity that was reduced last is said to be
causally� dependent upon all the other quantities in the equation, and a directed graph can be generated to
depict the causal dependency structure of the entire set, with nodes representing quantities and links
representing causal dependency relations among them. The exogenous quantities serve as initial, anchoring

nodes in the graph. The causal dependency graph computed for the RWA redesign problem is given in
Figure 9.

15

Compiling Redesign Plans and Diagnosis Rules Keller et al.

BearingTemp

RCEContribution _f RCE-BearingResistance

RCETemp A

,j_,,,,, Casin_WailThickness

Casin_ThermalConstant

MotorCurrent

ShahLength

M°t°rC°ntributi°n_M°t°r'BearingResistance _ MotorThermalConstant

_ MotorTemp _.......,....._ CoilRadiu,

" _ Motor-Current

_. MotorSpeed MotorCurrent

TunnelContribution _,TunnelTemp . TunnelReflectiv/ty

Tunnel-Bearin esistance _,,pC_asingThermaIConstant

. RCL_xlyWidth
RCEThermalConstant

3.3.

HKure 9:.CausaJ dependency graph derived from Appendix A equations

Redesign goal tree generation

Once the causal dependency graph is available, the compiler can use the graph plus the qualitative
differential equation model to produce a tree of redesign alternatives for achieving a specified redesign
goal. Goals take the form "{increase or decrease} quantity Q of component C". The compiler augments each
causal dependency node in the causal subgraph rooted at Q with the action "increase" or "decrease", as
appropriate, to convert the causal dependency nodes into redesign subgoals. For any given goal, the
qualitative equations can be used to determine the appropriate subgoals to form. For example, suppose the
goal is to increase the quantity z, and z is causally dependent on quantities y and z. Further assume that the
qualitative differential equation relating z to y and z is [z'] + [y'] + [z'] = 0. In order for z to increase, either

y must decrease (assuming z constant) or z must decrease (assuming y constant). This generates two
corresponding subgoals in the redesign goal tree. The leaves of the goal tree correspond to a set of "increase"
or "decrease" actions on externally-controllable (exogenous) quantities, and thus constitute an unordered set
of executable actions for achieving the top-level goal. The initial redesign goal tree generated in this
manner for the problem of decreasing the temperature of the RCE bearing (BearingTemp) is presented in
Figure I0. The leaves of the goal tree correspond to a set of actions on controllable (exogenous) quantities,
and thus constitute an unordered set of executable actions for achieving the top-level goal.

16

Compiling Redesign Plans and Diagnosis Rules Keller et al.

decrease

BearingTemp

decrease

RCEContnbution _ decrease
RCETemp v

increase
decrease f Motor-BearingResistance

MotorContribution decrease "_

MotorTemp

incFP-3se

CasingWall_tickness

increase 7 increase

_IP'RCE-BearingResistance _ CasingThermalConstant
decrease
MotorCurrent

increase

ShaftLength

increase
MotorThermaIConstant
increase

v CoilRadius

increasedecrease _ BallRadius

BeanngFriction "_k decrease
MotorSpeed

decrease

decrease ,,_ TunnelTem p
TunnelContnbution

r Y:

. decrease
Motor-Current

,_ increase
" BearingWidth

decrease
MotorCurrent

increase

v I unnelReflectivity
increase

j1_ .CasingWalIThickness
increase /increase

Tunnel.BearingResistances'Br CasingThermaIConstant
increase

RCEBodyWidth

I _increasey is a redesign subgoal of x -RCEThermalConstant

Figure 10: Initial redesign goal tree

3.4. Coal pruning and ordering

The next step in the compilation process is to prune and order the nodes in the goal tree according to a set of

redesign heuristics. This has the effect of transforming the set of possible redesign actions (represented by

the leaves of the goal tree)into a smaller,prioritizedsequence of recommended redesign actions. The end

resultof pruning and ordering the initialgoal treeisthe finalredesign goal treepresented in Figure 8 above.

The heuristics were developed based on conversations with the RWA designer. Each heuristic is

represented in a separate frame as a rule that reasons about the goal tree structure. In this way, task-

dependent heuristics can be isolated from the rest of the reasoning components and represented

declaratively.This makes iteasy to put in additional domain-specific redesign heuristicswhen new ones

are acquired or when the system isapplied to a differentdomain. The top window in Figure 11 shows the

frame hierarchy of the redesign heuristicscurrentlyin the knowledge base.

17

Compiling Redesign Plans and Diagnosis Rules Keller et al.'

Figure 11: Redesign heuristics

- °

3.4.1. Pruning heuristics

The compiler currently uses three pruning heuristics. The first heuristic, prune-violate-constraints, (see

the lower left window in Figure 11) eliminates any goals whose execution would violate pre-specified
design constraints on quantities. For example, suppose one of the goals suggests decreasing the current to the
motor. Further suppose that based on an analysis of qualitative equations relating motor current with motor
torque, the effect of executing this action would be a decrease in motor torque. If either the motor current or

the motor torque were constrained to be constant (e.g., to comply with specificatiom in a design document),
the compiler would prune the suggested goal. (As discussed in Section 2.2.2.1, simple unary constraints on
numeric quantities are represented in the Constraint slot of the corresponding quantity object.)

The second pruning heuristic, prune-weak-fhermal-connection, is specific to situations involving redesign of
thermodynamic properties. The basic idea is to prune any redesign actions involving components that are
thermally insulated from the target component undergoing thermal redesign. For example, suppose the
goal is to decrease the temperature of the RCE-bearingo and one of the recommended actions (i.e. leaf
subgoals) is to change the width of the exterior bay door. If the thermal resistance between the RCE-
bearing and the bay door is over a preset threshold, then the recommended action will be pruned. In other
words, due to high thermal resistance, the recommended action on the bay door is expected to have a

negligible thermal effect on the RCE-bearing, and should be omitted. The actual procedure for computing
thermal resistance is described later in Section 4.3. This heuristic is a specific version of a more general,
domain-independent heuristic that recommends avoiding modification of quantities that are only "weakly

determinant" of the goal quantity, where "weakly determinant _' is a domain-dependent notion.

18

Compiling Redesign Plans and Diagnosis Rules Keller et al.

The third pruning heuristic, prune-undefined-solution, eliminates any subgoals for which the effects of
their execution on the goal parameter cannot be determined from the given information. Such a situation
arises due to the qualitative nature of the equations we used to infer the influence of a parameter upon

another. For example, suppose we are given four parameters, w, x, y, and z with the following relations
among them: An increase in either x or y causes an increase in w, and an increase in z causes an increase in x
but a decrease in y. Then, if increasing w is our goal, we cannot decide whether increasing z will have a
negative or positive effect on w.

3.4.2. Ordering heuristic

The ordering heuristic, prefer-most-conductive-connection (see the lower right window in Figure 11), is
related to the second pruning heuristic. The thermal redesign actions that remain after applying the
resistance threshold are ordered by value of increasing thermal resistance. A more general statement of the
heuristic is to execute redesign actions so that quantities "strongly determinant" of the goal quantity are
modified before "weakly determinant" quantities.

3.5. Redesign plan synthesis

The final compilation step involves synthesizing an abstract redesign plan that caches the recommended
sequence of redesign actions for accomplishing the specified redesign goal. The plan is a type of macro-rule
formed from the root and leaves of the final redesign goal tree. In particular, the root of the tree forms the
rule's antecedent (the plan applicability conditions) and the ordered leaves of the tree form its consequent

(the abstract plan, itself). 5 The final rule produced from the goal tree in Figure 8 is given at the beginning
of Section 3.

3.6. Summary: Compiling redesign plans

Figure 12 summarizes the entire process of compiling redesign plans, starting with the general-purpose
RWA device model and ending with a special-purpose redesign heuristic. Note how the information
content of the original structure/behavior model is reduced by each successive compilation step.
Furthermore, each successive model is more specially tuned and efficient for the requirements of the
redesign task at hand. The compiler takes a number of different types of knowledge as input, ranging from
problem specific information (e.g., the redesign goal, controllability assumptions) to problem class specific
information (e.g., thermal redesign heuristics, system scoping assumptions). [f any of these inputs change,
the derived redesign plans should be recompiled.

5In practice, an antecedent containing only the specified redesign goal will be overly general and, as a result, may
recommend the consequent redesign plan when it does not correctly apply. To remedy this situation, additional
assumptions used in formulating the redesign plan must be included in the antecedent to restrict the consequent's
domain of applicability. For example, it is possible to specify the scope of the redesign analysis, and the heuristics used
to prune and order the redesign actions as part of the antecedent.

19

CompilingRedesignPlans amt D/agnosis Rules Keller et al.

I RWA Structure/Behavior IDevice Model

System scoping_ ._assumptions ,,) v

Assumptions about_ ._

sign of quantities _)

Equation set
assemt:ly

endency
_ i .JL. analysis

T

i

oo.,
Goal tree

generation

I Redesign Goal Tree !

__ Goal pruningand ordering

I I

I Pruned and OrderedRedesign Goal Tree

Abstract plan
synthesis

]Abstract Redesign Plan I

Figure 12: Compilation of redesign plans

4. COMPILING DIAGNOSTIC RULES

The second knowledge compiler takes as input the same structure/behavior device model as the redesign

plan compiler, but it produces a set of special-purpose "fault localization" rules for diagnosis, instead. The
diagnostic rule compilation process differs markedly from the process described in Section 3, by which an
abstract redesign plan is compiled. While the latter resembles macro-formation, the former involves

partial evaluation of a very general fault localization rule. In describing the behavior of the compiler, we
present in reverse order the sequence of three compilation steps being executed, starting with the "target" of

the compilation activity -- a specific fault localization rule - and working backwards toward its

2O

Compiling Redesign Plans and Diagnosis Rules Keller et al.

decompiled "source" - the general-purpose device model. This order of presentation reflects the "reverse

engineering" methodology used in constructing the compiler.

4.1. Compiling Fault Localization Rules

Following is an example of a fault localization rule that the diagnostic compiler can produce: 6

R2: if
and
and
then

Temperature of RCE-BEARING-SEN$OR-22 is High
Temperature of RCE-SENSOR-34 is OK
Temperature of TUNNEL-SENSOR-101 is OK
set Malfunction of RCE-BEARING-6 to True.

To understand this rule, refer to Figure 13. The rule says that if the sensor for the RCE-bearing is
abnormally high, and nearby sensor readings are normal, then there must be a malfunction within the RCE-
bearing. On first analysis this rule appears incomplete because it only checks the sensor readings for the
RCE and the tunnel, and omits other nearby components that could potentially influence the reading on the
RCE-bearing sensor. For example, the motor generates considerable heat, and so do the PCE and the bay
door (which heats up due to the sun). Why aren't these heat sources checked in the compiled rule? The
answer is that the experts consider the influence of these heat sources to be negligible.

/

Tunnel-side •

Figure 13: RWA component features referenced in rule R2

To produce R2, the rule compiler makes use of a simple, but general diagnostic fault localization model.
Suppose {SRC1, SRC2 SRCn} is a set of source components that produce some substance S (e.g., thermal

energy), and suppose {SEN1, SEN2, ..., SENn} is a set of corresponding sensors that measure the amount of S

at each source component. Here is a general diagnostic rule that captures the fault localization idea:

6This rule was extracted from an actual "shallow" RWA diagnostic expert system built by Lockheed [Austin & Laffey
861.

21

Compiling Redesign Plans and Diagnosis Rules Keller et al.

RI: If
and

then

Reading of $ENi is Abnormal

(forall k_i I influences(SRCk, SENi))

Reaaing of SENk is Normal
set Malfunction of SRCi to True.

Notice how the predicate influences captures the notion that only certain sources are capable of influencing

the reading of a given sensor. To automatically compile rule R2 from rule R1, the compiler uses a technique
called partial evaluation [Kahn 841. Partial evaluation produces a specialized version of R1 by
incorporating domain knowledge about the source components (SRCs} and the sensors ($ENs}. For example,
if we are trying to localize faults within RCE-BEARING-6, we know the variable SENi in rule R1 must be

bound to the sensor RCE-BEAR/NG-SENSOR-22. This is due to our knowledge about the RWA device,
which tells us which sensors are designed to measure which components. Furthermore, we know that RCE-
BEARING-SF.NSOR-22 measures temperature, that its defined abnormal value is "high', and that its

normal value is "ok'. Again, this is specific domain knowledge pertaining to the particular sensor. (A
different sensor might measure current, for example, and its abnormal reading might be "low", "13.6", or any
other sensor-specific notion of abnormal.) By "folding" this knowledge into R1, we get the following rule:

RI.S: If
and

then

Temperature of RCE-BEARING-SENSOR-22 is High
(forall k_i l influences(SRCk, RCE-BEARING-SENSOR-22))

Reading of $ENk is OK

set Malfunction of RC£-BEARING-6 to True.

The final step from RI-5 to R2 can be achieved if we know the identity of all heat sources in the RWA, and
know whether each heat source is capable of influencing RCE-BEARING-SENSOR-22 or not. For example,

suppose we have available the simple model of thermal influences on the RWA sensors, as depicted in
Figure 14. 7 In this model, a heat source is connected to a heat sensor if the source can influence the sensor's

reading. Using this model, the rule compiler can evaluate the forall clause in RI.5, and correspondingly
generates a separate clause in R2 for each of the two heat sources that influence RCE-bearing-sensor-22:
RCE-201 and Turme|-door-14.

Note that both RI and R2 achieve the exact same result when fired on RCE-BEARING-6 - they both set its
Malfunction slot to True. The fundamental difference between the two rules is that R2 trades off Rl's

generality for increased computational efficiency. IG is less general than R1 because it only works for a
single sensor:. RCE-bearing-sensor-22. But 112is more efficient than R1 because less computation is necessary

in order to match R2's "if" part. Computing Rl's "if" part involves matching all known heat sources and
computing the "influences" predicate for each. If we have available a model such as the one in Figure 14,
the amount of computational effort necessary to compute "influences" is minimal. In general, however, this
type of pre-computed thermal influence model may not be available. In this case, it will be necessary to
spend additional computational effort to compute the "influences" relations from more basic knowledge
about the thermal structure of the RWA. This process is described in the following section.

71"osimplify the presentation of the thermal sensor influence model, Figure 9 only displays influences for two of the
RWA sensors.

22

Compiling Redesign Plans and Diagnosis Rules Keller et al.

HEAT SOUR£_S

Tunnel-door

Motor-sensor Motor

RCE

Exterior-door

influences ." •

_Motor-bearing

RCE-beartng

._,,,__a rin g-sens or

my

...and other sensors

Figure 14: Thermal influence model for RWA

mT SOtmC:F__

Tunnel-door

Motor-sensor _Mo_r _aring-sensor

• C_-
-,- ./

Figure 15: Thermal resistance model for RWA

23

CompilingRedesign Plans and Diagnosis Rules Keller et al.

4.2. Compiling the Thermal Influence Model

Suppose we have availablea more sophisticatedthermodynamic model of theRWA basedon thenotionof

thermalresistance.In thismodel (Figure15),thereisa numeric thermal resistancevalueassociatedwith

each heatflow path linkinga heat sourceand a heatsensor. The higherthe resistancevalue,the harder

itis/orheattoflow along the path. Itfollowsthattheamount of thermal influenceimposed by a given
heatsourceon a given heatsensorissomehow inverselyproportionaltothe amount of thermalresistance

alongthepathbetween thesourceand sensor.One way ofderivingthebinarythermalinfluencemodel from
a scalarthermalresistancemodel isto thresholdthethermalresistancevalue. Any heatflowpath with a

resistancebelow the presetthresholdwillbe considereda path of thermalinfluencewhen generatingthe

thermalinfluencemodel. For example, with the thresholdset at 20, the thermal resistancemodel in

Figure 15 collapses into the thermal influence model in Figure 14.

Note that the transformation from resistance model to influence model is an information-losing

transformation. In particular, the influence model incorporates several implicit assumptions that are made
explicit in the resistance model. For example, the assumptions made in designating a heat source
"influential" can be made explicit in the resistance model by specifying a threshold and a resistance metric.
The relationship between the two thermal models is similar to the relationship between the diagnostic
rules R1 and 112above; there is a trade-off between generality and efficiency in these two models. It is more
efficient to determine thermal influence by thresholding the influence model, but the model is not suited for
much else. On the other hand, computing thermal influence with the resistance model is still possible,
(although less efficient), and because the resistance model carries more information, it is more versatile. In
particular, the resistance model can be used to answer a larger set of questions about thermal properties of

RWA - including, but not strictly limited to questions about thermal influence.

4.3. Compiling the Thermal Resistance Model

We can carrythistrade-offbetween generalityand efficiencyonce stepfurtherby decompilingthethermal

resistancemodel in terms of the RWA devicemodel specifiedin Section2.2.Unlikethethermalresistance

model, which provides a special-purposemodel of certainthermodynamic propertiesof the RWA, the

devicemodel ismore general-purpose,and can be used toanswer a wider varietyofquestionsabout the

device.Using informationabout physicalstructureand materialcompositionmade availableby thisRWA

mode[,plusknowledge about thermodynamics and heat-flow,thediagnosticrulecompilercan generatethe

special-purposethermalresistancemodel inFigure15.

The generationof a thermal resistancemodel fortheRWA isaccomplished intwo steps:I)establishment

of heat flow paths and 2) computation of thermal resistancealong those paths.First,the compiler
establishesa thermal connection between each heatsource and heat sensorin the RWA (Figure16).

Thermal connectionsare representedina manner similarto physicalconnections,as discussedinSection

2.2.1.3above.For example, the followingthermalconnectionobjectrepresentstheheatflowpath between
RCE-BEARING-SENSOR-22 and TUNNEL-DOOR-43:

Object: RCE-BEARING'TUNNEL-DOOR-I28
Type: individual
Generalizations: THERMAL-CONNECTION

Specializations: nil

CompI: RCE-BEARING-SENSOR-22
Comp2. TUNNEL-DOOR-43
Resistance: RCE-BEARING*TUNNEL-DOOR-RESISTANCE-221

24

Compiling Re,design Plans and Diagnosis Rules Keller et al.

The filler of the Resistance slot is a QUANTITY instance, which records the actual numeric value of the

thermal resistance. The compiler knows whether a given component within the RWA generates heat

because this information is explicitly recorded in one of the component's slots. 8

The actual thermal resistance between two components is computed by one of two equations associated with

the class of THERMAL-RESISTANCE quantities. The first equation uses a radiative model of heat flow to
compute the thermal resistance, whereas the second equation uses a conductive model.

Object: THERMAL-RESISTANCE
T_,.. class
Generalizations: Q/2ANT/TY
Specializations: nil
Pouible-eq_afqo_: _Radiative.resistmw_-eqn*s,Conductive-resistmw_'equ's}
R_liafive-resistance-c, qn's: ; filled when instantiated
Conductive-r_istance-eqn*s: ; filled when instantiated

Hubble ,Space Telescope Demo

Figure 16: Establishing thermal connections

8In a more complete model of the RWA device, various physical processes - such as heat generation, heat flow, and
energy conversion - might be represented explicitly (e.g., as in (Forbus 841). In this case,the system might be able to
automatically infer which components generate heat using more basic principles.

25

Compiling Re_lesign Plans and Diagnosis Rules Keller et al."

The radiative equation consists of a procedure call 9 which computes the resistance of a thermal connection

as follows: Using the bounding box spatial representation (Section 2.2.1.2), a straight line path is computed
between the centers of two thermally-connected components (i.e., between the centers of the heat source and
the heat sensor). Then the resistance is calculated according to the following formula:

Tlmma/

I¢_btmmrra d = dij "

' l,a [_l'¢°wt_mtk "Patkdcn_hk}

n

where:. d//is the linear distance between the center of components i and j
k is an index over the components intersecting the straight line path

betwem components i and j
m is the number of intersecting components
t}m_al-co_tamt k refers to the thermal constant associated with

component k'. material
path-1_ffh k refers to the length of intersection between component

k and the straight line path

The radiattv_ resistance is a weighted average of the thermal constants associated with the materials of
each primitive component in the straight line path between the heat source and sensor. The weighting is

proportional to the thickness of the components in the heat flow path. This is illustrated by the display in
Figure 17. Although the formula is not accurate from a thermodynamic perspective, it provides a heuristic
estimate of the radiative resistance.

,I0
Conductive resistance is computed by a similar procedure. However, instead of using a straight line path
between the heat source and sensor, the conductive procedure searches/or a connected physical path
between the two components using the RWA device model representation of physical connections (see
Section 2.2.1.3).

Figure 17: Computing radiative resistance

9The equation is too complex to state in the system's current equation languase, which allows only simple algebraic
constraints between quantities. See Section 2.2.2.2.

26

Compiling Redesign Plans and Diagnosis Rules Keller et al.

4.4. Summary: Diagnostic Rule Compilation

Figure 18 summarizes the entire rule compilation process. In the first step, the RWA structure/behavior
device model is compiled into a thermal resistance model by applying one of two heat flow equations.
Next, the thermal resistance model is reduced to a thermal influence model by applying a thresholding

procedure. Finally, a set of RWA-specific fault localization rules is produced by partially evaluating a
generalized fault localization rule based on information in the thermal influence model. At each step in
this process, the information content of the resulting model is reduced, yielding a more efficient, but less

general-purpose model of the RWA.

Influence Threshold)

Generalized Fault_

Localization Rule//

I RWA Thermal Resistance Model I

J Thermal resistance

"-_ threshoiding

IRWAThermal Influence Modell

J Partial rule

evaluation

I RWA Fault Localization Rules I

Figure 18: Compilation of diagnosis rule

27

CompilingRedesignPlans and DiagnosisRules Kelleret al.

5. DISCUSSION

The examples described above illustrate how the rule compilation approach can be applied to derive two
types of shallow knowledge (abstract redesign plans and fault localization rules) from a common underlying
device model. Figures 12 and 18 summarize both the steps involved and the intermediate models derived as
by-products during the design and diagnostic compilation processes, respectfully. Note that although the
intermediate models are derived by either the redesign or the diagnostic compiler, these models are not
necessar/ly task specific. For example, the qualitative equation, thermal resistance, and causal
dependency models (in Figure 12), as well as the thermal resistance and thermal influence models (in Figure
18) are quite general-purpose. These models could potentially be useful in a number of different application
tasks. In fact, the thermal influence model is actually used in both our redesign task (where it is used to
prune from consideration any redesign activities focused on thermally insulated components) and our
diagnosis task (where it is used to determ/ne which heat sources could cause an abnormally high thermal

reading for a given heat sensor). Toward the end of the compilation process, the derived models take on an
increasingly task specific flavor with the incorporation of more task specific knowledge. For example, the
redesign compiler uses redesign goals and heuristics to generate goal trees that are specific to the redesign
task.

The finalend-product of the compilationprocessisa setof highlytuned,taskspecificrules or plans.

However, in contrastwith traditionalexpertsystem rules,compiled rules/plansare more robustunder

conditionsofchangeovertime.Inparticular,when underlyingdeep models change,therulesorplanscan be
recompiled toreflectthe updated information.For example, suppose thatafterextensivetesting,NASA

designersdecidetochoose a lighterbut more conductivematerialfor the motor shaft.In thiscase,the

amount of heat transferredfrom the motor to the RCE bearing via the motor shaftwould increase.

Correspondingly,the priorityof redesignactionsassociatedwith decreasingmotor heatshouldincrease.

The diagnosticand redesigncompilersfacilitatethe processof automaticallyupdating thenow-invalidI0

abstractredesignplan(seebeginningofSection3). Alltheuserneeds todo ischange theshaftmaterialin

theRWA devicemodel (Section2.2),and re-runthecompilers.Resultingchanges inthethermalresistance

and thermalinfluencemodel willinteractwith theredesignorderingheuristictocausea re-orderingofthe

leavesinthegoaltreeand,correspondingly,in theactionsinthefinalredesignplan.

Aside from making systems sensitivetochanges in underlyingmodels,therulecompilationapproach has

the potential to enhance system robustness in a second sense. In particular, if any of the shallow rules are
found to be incorrect, the system should be able to (1) justify the suspect rules in terms of the underlying
models, then (2) identify the potentially incorrect assumptions or approximations used in producing the
faulty shallow rule, and finally (3) fix the rule by correcting assumptions and recompiling a new rule. An
approach to the rule justification process that is consistent with our viewpoint has been pursued by
Swartout in his work on the XPLAIN system [Swartout 83l. Swartout reasons that to provide proper
justification of expert system behavior, a system must have access to underlying domain models and to goals
of the expert system's designer. XPLAIN contains an automatic programming component capable of

generating a portion of an expert system based on this type of knowledge. Justifications are phrased in terms
of the decisions made by the automatic expert system derivation. Similarly, justifications for the RWA
rules can be phrased in terms of the model transformation decisions made by the appropriate knowledge
compiler.

After a system succeeds in reconstructing the justification underlying a faulty shallow rule, the next step
would be to identify and fix incorrect assumptions or approximations used in producing that rule. This
identification process is essentially a blame assignment process. In order to isolate incorrect assumptions,

10Assumingtheplancompilerexplicitlyrecordsthechainofmodelsand assumptionsusedinderivingtheplan,itis
straightforwardtodeterminewhethera givenchangeinan underlyingmodel willimpactthefinalplan'svalidity.A
mechanismsimilarinspirittothoseusedby reasonmaintenancesystems[Doyle79]isrequired.}

28

Compiling Redesign Plans and Diagnosis Rules KeUer et al.

the system requires knowledge about which assumptions are more likely to be faulty. For example, some of
the assumptions compiled into abovementioned rule R2 include assumptions about RWA component
attributes like position and material, as well as the value used for thermal resistance threshoiding. The
RWA component attributes are less likely to be incorrect than the threshold value because they have been
obtained from the design specifications and reflect the actual device. On the other hand, the threshold
setting is a heuristic value based on little direct empirical evidence and lacking solid theoretical
underpinnings. To aid in this type of blame assignment process, Smith describes a language for describing
assumptions underlying rules [Smith et al.]. The language allows the user to specify different assumption
types (e.g., default, definitional, theoretical, statistical) and to specify dependencies among assumptions
(e.g., abductive, deductive) that are used in propagating information about assumptions.

Although the overall rule compilation approach is promising, the work reported in this paper takes only
the first steps toward evaluating the feasibility of this approach. We have illustrated two examples of
rule compilation, but we have not developed a general architecture or mechanism for accomplishing

knowledge compilation. Although the device representation is general-purpose and the rule compilation
procedure will work for arbitrary devices described in this representation, the compilation steps

implemented by the two knowledge compilers are "hard-wired" for the type of diagnosis and redesign
problems illustrated in this paper. The construction of a general-purpose rule compiler raises a number of
very difficult research questions. To understand the general issues, it is fruitful to view rule compilation as
a search process through a space of models. The starting node is the general-purpose device model, the
operators are approximating model transformations (e.g., thresholding, macro-formation), and the
terminal node represents an efficient task-specific model. This view is generally consistent with the
perspective taken in much previous work on knowledge compilation [Mostow 81, Keller 87, Ellman 88].
Some of the basic questions that must be answered before we can understand whether it is possible to build
completely automated rule compilers include:

How does one design a language for declaratively describing models, assumptions, and
transformations on models?

- What set of model transformation operators is sufficient to handle compilation for a given type of
task? Is there a significant overlap in the model transformation operators necessary to compile
rules for different types of tasks?

- Is it possible to provide the search control necessary to select from the set of all available model
transformation operators to apply at any given point in the search?

- Is it possible to recognize a terminal state in the model transformation search? I.e., what
constitutes an "efficient task-specific model"?

Note that the rule compilation approach could be useful even if total automation of the process is not
feasible. For example, a knowledge engineer might interactively provide the search control necessary to
select and apply the model transformation operators. In terms of enhancing robustness, the important point
is that the various device models and assumptions be made explicit, along with the transformations that
bridge the gap between models at different levels of detail. This way, the (human-guided) compilation
process is recorded, and recompilation can proceed automatically when the underlying model changes, in
addition, the links back from the shallow model to the underlying models are preserved, and can be
traversed when assumptions are violated and it is necessary to "fall back" on underlying models.

We do not believe that every high performance expert systems can be constructed solely using the rule
compilation methodology. Sometimes, expert system rules merely encode the expert's experience as simple
empirical associations between patterns and actions, and there is no underlying theory to justify the
associations. In these cases, it is difficult to imagine how a program could compile such rules. However, in
many domains, an underlying theory is available to provide some degree of justification for the expert
rules. In these cases, we believe the rule compilation methodology is appropriate. As most expert systems

29

Compiling Redesign Plans and Diagnosis Rules Keller et al.

contain a mix of theory-based and empirical associations, we would expect rule compilation to be
appropriate for some rules, but not all, in a given expert system.

ACKNOWLEDGMENTS

We would llke to thank the other members of the LMKB project for their contribution to this effort. This
research has been supported by NASA under Grant # NCC2-$37. The research reported in this chapter was
performed at Stanford Knolwedge Systems Laboratory during a period from 1987 to 1989.

3O

Compiling Redesign Plans and Diagnosis Rules KeUer et al.

APPENDIX A

Following is a list of the qualitative differential equations collected during the equation set assembly
process described in Section 4.1. This set of equations constitutes a model of the qualitative behavior of the
RWA. The equations are in a canonical form with zero on the right hand side of the equation. There is one
equation of the form [Q'] = 0 for each exogenous quantity Q known to the system (see equations 1 - II). The

notation [Q'] stands for the sign (% -, 0) of the time derivative of Q. See [lwasaki 89] for a discussion of
qualitative arithmetic.

1) [MotorCurnmt'] = 0

2) [CasingWaliThickness'i = 0

3) [CasingThermalConstant'l = 0

4) [RCEBodyWidth'l = 0

5) [RCEThermalConstant'l = 0

6) [BearingWidth'] = 0

7) [ShaftLength'l = 0

8) [MotorThermalConstant'] = 0

9) [CoilRadius'l = 0

10) [CoilDensity'l = 0

11) [TunnelReflectivity'] = 0

12) - [RCEBeanngResistance'l + [RCETemp'I - [RCEContribution'] = 0

13) [MotorCurrent'] - [RCETemp'] = 0

14) [CasingWallThickness'l + [C.asingThermalConstant'] + [RCEBodyWidth'] + [RCEThermalConstant'l

- [TunnelBearingResistance'l = 0

15) - [TunnelBearingResistance'l + [TunnelTemp'l - [TunnelContribution'] = 0

16) - [MotorBearingResistance'] + [MotorTemp'l - [MotorContribution'] = 0

17) - [BearingWidth'] + [BallRadius'] = 0

18) [BallRadius'l - [MotorSpeed'l + [BearingFriction'] = 0

19) [TunneIContribution'] + [RCEContribution'] + [MotorContribution'] + [BearingFriction'] - [BearingTemp'] = 0

20) [ShaftLength'] + [MotorThermalConstant'] - [MotorBearingResistance'] = 0

21) [MotorCurrent'l - [MotorTorque'] = 0

22) - [MotorCurrent'l + [MotorSpeed'! = 0

23) - [CoilRadius'] + [MotorCurrent'] - [MotorTemp'] = 0

24) [CoilDensity']+ [CoiiRadius'l - [CoilWeight'] = 0

25) [CasingWaUThickness'] + [CasingThermalConstant'! - [RCEBearingResistance'] = 0

26) [TunnelReflectivity 'i+ [TunnelTemp'l = 0

31

Compiling Redesign Plans and Diagnosis Rules Keller et al.

REFERENCES

[Anderson 86] J.IL Anderson, "Knowledge Compilation: The general learning mechanism". In Machine
Learning, Volume II, R.S. Michalski, J.G. Carboneil, and T.M. Mitchell (editors), Morgan Kaufmann,
1986.

[Araya & Mittal 871 A. Araya and S. Mittal, "Compiling Design Plans from Descriptions of Artifacts and
Problem Solving Heuristics". In Proceedings IJCAI-87, pp. 552-558, August 1987.

[Austin & Laffey 86l A. Austin and T. Latfey, "Knowledge-based Analysis of Telemetry Data on the Hubble
Space Telescope". Technical report, Lockheed AI Center, 1986.

[Brown & Sloan 871 D.C. Brown and W.N. Sloan, "Compilation of Design Knowledge for Routine Design
Expert Systems: An initial view". In Proceedings ASME International Computers in Engineering
Conference, New York, NY, Voi. 1, pp. 131-136, 1987.

[Chandrasekaran & Mittal 83] B. Chandrasekaran and S. Mittal, "Deep versus Compiled Knowledge

Approaches to Diagnostic Problem-solving". International Journal of Man Machine Studies, Vol. 19, pp.
425-436, May 1983.

[Davis 841 R. Davis, "Diagnostic Reasoning Based on Structure and Behavior",Artificial Intelligence, vol.
24, nos. 1-3, pp. 347-410, 1984.

[deKleer& Brown 841 J.de Kleer and J.S.Brown, "A QualitativePhysicsBased on Confluences",Artificial

Intelligence,vol.24,no. 1-3,pp. 7-84,1984.

[Dietterich 86] T.G. Dietterich (ed.), Proceedings of the Workshop on Knowledge Compilation, Inn at Otter
Crest, Oregon, Oregon State University technical report, 1986.

[Doyle 791 J. Doyle, "A Truth Maintenance System". Artificial Intelligence, vol. 12, no. 3, pp. 231-272, 1979.

[Ellman 88l T. Ellman, "Approximate Theory Formation: An Explanation-Based Approach". In Proceedings
AAAI-88, St. Paul, Minnesota, pp. 570-574, August 1988.

[Forbus 84] K.D. Forbus, "Qualitative Process Theory". Artifk'iai Intelligence, vol. 24, nos. 1-3, 1984.

[Gelman et al. 881 A. Gelman, S. Airman, M. Palakoff, K. Doshi, C. Manago, T.C. Rindfleisch, and B.G.
Buchanan, "FILM: An Intelligent Assistant for Financial Resource Management". In Proceedings AAAI-

88, St. Paul, Minnesota, pp. 31-36, August 1988.

[Genesereth841 M.R. Genesereth,"The Use of Design Descriptionsin Automated Diagnosis",Artificial

Intelligence,vol.24,no. I-3,pp. 411-436,1984.

[lwasaki & Simon 86] Y. Iwasaki and H. A. Simon, "Causality in Device Behavior", Artificial

Intelligence, vol. 29, no. 1, pp. 3-32, 1986.

[Iwasaki 89l Y. Iwasaki, "Qualitative Physics", The Handbook of Artificial Intelligence, Vol. 4, A. Ban',
P.R. Cohen, and E.A. Feigenbaum (eds.), Addison-Wesley, Reading, MA, 1990.

[Kahn 84] K.M. Kahn, "Partial Evaluation, Programming Methodology, and Artificial Intelligence", AI
Magazine, vol. 5, no. l, pp. 53-57, 1984.

32

Compiling Redesign Plans and Diagnosis Rules Keller et al.

[Keller 87] R.M. Keller, The Role of Explicit Contextual Knowledge in Learning Concepts to Improve
Performance, Ph.D. thesis (technical report # ML-TR-7), Department of Computer Science, Rutgers
University, 1987.

[Kelleret al. 87] R.M. Keller,B.C. Buchanan, E.A. Feigenbaum, "Development of a ReusableKnowledge
Base for Space Applications". In Proceedings of the Second Annual NASA Ames Artificial Intelligence
Research Forum, pp. 357-365. NASA, Palo Alto, CA, Nov. 1987.

[Laird et al. 87] J.E. Laird, P.S. Rosenbloom, and A. Newel[, "Soar: An architecture for general

intelligence", Artificial Intelligence, vol. 33, no. 3, 1987.

[LMSC 84] Support Systems Module System Procedure for Pointing and Control Subsystem (SE-23, Vol. V),
Lockheed Missiles and Space Company document # D889,545A, 1984.

[Mostow 81l D.J. Mostow, Mechanical Transformation of Task Heuristics into Operational Procedures,
Ph.D. thesis (technical report # CMU-C_.S-81-113), Department of Computer Science, Carnegie-Mellon
University, 1981.

[Perkins& Austin 87] W.A. Perkinsand A. Austin,"Experimentswith Temporal Reasoning Applied to

Analysisof Telemetry Data".In Space StationAutomation III,vol.851,pp. 39-46,Societyof Photo-

OpticalInstrumentationEngineers,1987.

[sombugamoorthy & Chandrasekaran 86] V. Sembugamoorthy, and B. Chandrasekaran, "Functional
Representation of Devices and Compilation of Diagnostic Problem-solving Systems". In Kolodner, J.L.
and Riesbeck, C.K. (editors), Experience, Memory, and Reasoning, Lawrence Erlbaum Associates,
Hillsdale, NJ, 1986.

[Smith83] R.G.Smith,"Strobe:Support forStructuredObjectKnowledge Representation".InProceedings

IJCAI-83,Karlsruhe,Germany, pp. 122-129,August 1983.

[Smith et al. 85] R.G. Smith, H.A. Winston, T.M. Mitchell, and B.G. Buchanan, "Representation and Use of

Explicit Justifications for Knowledge Base Refinement". In Proceedings IJCAI-85, Los Angeles, CA, pp.
673-680, August 1985.

[Swartout 83] W.R. Swartout, "XPLAIN: A System for Creating and Explaining Expert Consulting
Programs", Artificial Intelligence, vol. 21, no. 3, pp. 285-325, 1983.

33

